Oligomeric Thioglycosides with α -D-*manno*-(1' \rightarrow 2) Linkages from a Glycal-1,2-episulfide

ORGANIC LETTERS 1999 Vol. 1, No. 4 611-613

Spencer Knapp* and Krishnan Malolanarasimhan

Department of Chemistry, Rutgers-The State University of New Jersey, New Brunswick, New Jersey 08854-8087

knapp@rutchem.rutgers.edu

Received June 2, 1999

ABSTRACT

Under basic conditions, phenyl 1,2-dithio- α -D-mannopyranoside forms a glycal-1,2-episulfide, which undergoes controlled oligomerization to afford a family of thio-oligo- α -D-mannopyranosides in a single reaction. The episulfide can also be intercepted by added thiolates, which leads to other sorts of thioglycosides. These α -(1 \rightarrow 2)-linked thio-mannopyranosides might have application as mimics of natural structures such as viral high-mannose glycoproteins or ManLAM.

1-Thioglycosides, carbohydrate derivatives that bear a sulfur atom instead of oxygen at the anomeric linkage, are more resistant to cleavage by glycosidases than the naturally occurring O-glycosides.¹ Because of their structural similarity to the natural substrates, 1-thioglycosides can serve as modest competitive inhibitors of glycosidases² and as enzymeresistant scaffolds to support ligands whose enzyme binding or other interactions may be of interest.³ 1-Thioglycosides are usually assembled by S-glycosylation of simple thiols or by S_N2 displacement reactions that take advantage of the nucleophilicity of the thiolate anion. The multistep nature of these approaches has limited the synthesis of S,Strisaccharides and S,S,S-tetrasaccharides to just a few examples.⁴ With a contrasting strategy, we have found that a glycal-1,2-episulfide 5 (Scheme 1) can be slowly generated in solution. Remarkably, 5 undergoes controlled oligomerization to afford a family of thio-oligo- α -D-mannopyranosides (7–9) in a single reaction. These α -(1→2)-linked thiomannopyranosides might have application as mimics of natural structures with similar linkages, such as the outer surface of high-mannose glycoproteins such as gp120 in the viral coat of HIV⁵ or the mannosylated lipoglycan, ManLAM, that mediates human macrophage phagocytosis of virulent strains of *Mycobacterium tuberculosis*.⁶ They might also serve as inhibitors of α -mannosidases with 1,2-linkage specificity.⁷

The precursor to **5** was made (Scheme 1) from methyl 2,3-di-*S*,*O*-acetyl-4,6-*O*-(phenylmethylene)-2-thio- α -D-mannopyranoside **1**, which itself had been prepared from commercial methyl 4,6-*O*-(phenylmethylene)- α -D-glucopy-

⁽¹⁾ Reviews: Defaye, J.; Gelas, J. In *Studies in Natural Products Chemistry*; Rahman, A., Ed.; Elsevier: New York, 1991; Vol. 8, pp 315–357. *Carbohydr. Chem. (UK)* **1998**, *30*, 159–166.

⁽²⁾ Witczak, Z. J.; Boryczewski, D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3265–3268, and references therein.

⁽³⁾ For some recent examples, see: Zanini, D.; Roy, R. J. Org. Chem. **1998**, 63, 3486–3491, and references therein.

⁽⁴⁾ Contour-Galcera, M.-O.; Guillot, J.-M.; Ortiz-Mellet, C.; Pflieger-Carrara, F.; Defaye, J.; Gelas, *J. Carbohydr. Res.* **1996**, 281, 99–118. Contour-Galcera, M.-O.; Ding, Y.; Ortiz-Mellet, C.; Defaye, J. *J. Carbohydr. Res.* **1996**, 281, 119–128.

⁽⁵⁾ Matsuo, I.; Miyazaki, T.; Isomura, M.; Sakakibara, T.; Ajisaka, K. *J. Carbohydr. Chem.* **1998**, *17*, 1249–1258, and references therein.

⁽⁶⁾ Schlessinger, L. S.; Hull, S. R.; Kaufman, T. M. J. Immunol. 1994, 152, 4070–4079.

⁽⁷⁾ Maruyama, Y.; Nakajima, T.; Ichishima, E. Carbohydr. Res. 1994, 251, 89–98, and references therein.

ranoside in two steps.⁸ Acid hydrolysis of the benzylidene protecting group and subsequent acetylation gave the tetraacetate **2**, and then acetal exchange with thiophenol⁹ led to the phenyl thioglycoside **3**. The (C-1)- α stereochemistry of **3** is indicated by its ¹³C⁻¹H coupling constant of 173 Hz.¹⁰ Deacetylation of **3** under Zemplen conditions gave rise not only to the expected mercaptotriol **6** but also to a mixture of oligomeric thioglycosides (**7**–**9**) still bearing the 2-mercapto substituent.

The thioglycoside products 6-9 were characterized by their IR, FAB-MS, and ¹H and ¹³C NMR spectra. Each showed the expected number of anomeric thioglycoside C's at 88–92 ppm and anomeric H's at 5.5–5.8 ppm. The

612

disaccharide 7, α -linked according to the anomeric J_{C-H} 's, was further characterized as its heptaacetate, which exhibited the expected ¹H resonances and IR absorbances for its *S*-acetyl and six *O*-acetyl residues.

Thiirane **5** can be intercepted by thiolates unrelated to **4**, which leads to other sorts of thioglycosides. As an example, phenyl 1,6-dithio- α -D-mannopyranoside **11** was prepared from mannose pentaacetate **10** by standard transformations (Scheme 2). Deacetylation of **11** in methanol presumably

led to the formation of the 6-thiolate, which was trapped by adding thiirane precursor **3** to the same solution. To facilitate isolation of the products, air oxidation (which could not be altogether prevented anyway) was allowed to proceed during workup. The *pseudo*-trisaccharide **12** was obtained in 31% yield (based on **3**), along with two disulfides, **13** and **14**, that formed from **11** as byproducts. Thiirane **5** is implicated as the likely intermediate leading to **12**, and the thiolate derived from **11** evidently competed successfully for **5** with other thiolates present in solution. Another primary thiolate precursor, protected cysteine **15**, was converted to the glycopeptide¹¹ mimic **16** by sequential treatment with sodium methoxide and **3** (Scheme 2).

Phenyl 1,2-dithio- α -D-mannopyranoside 3 and the derived 1,2-episulfide 5 exhibit reactivity that is unusual in several

⁽⁸⁾ Knapp, S.; Naughton, A. B. J.; Jaramillo, C.; Pipik, B. J. Org. Chem. **1992**, *57*, 7328–7334.

⁽⁹⁾ Ferrier, R. J.; Furneaux, R. H. *Methods Carbohydr. Chem.* **1980**, *8*, 251.

⁽¹⁰⁾ Uhrinova, S.; Uhrin, D.; Liptaj, T.; Bella, J.; Hirsh, J. Magn. Reson. Chem. **1991**, 29, 912–922, and references therein.

⁽¹¹⁾ Review: Taylor, C. M. Tetrahedron 1998, 54, 11317-11362.

respects. Phenylthiolate (PhS⁻), a reactive nucleophile, is not normally considered a leaving group at the anomeric position of sugars. For example, phenyl 1-thio-α-D-mannopyranoside,¹² prepared from **10** in two steps, is stable to methanolic sodium methoxide. We have found that certain other 2-thio- α -D-mannopyranosides, such as *p*-nitrophenyl, do decompose during S-deacetylation at C-2 but methyl 2-thio-α-D-mannopyranoside can be made from its peracetate 2 by treatment with methanolic sodium methoxide without loss of methoxide at C-1. Treatment of 11 with sodium methoxide likewise does not lead to thiolate ring closure at C-1, and the 2-thioglycoside products 7–9 are isolable from methoxide solution with the 1-thio linkage intact. One can thus attribute the ring closure reaction of 4 to a favorable S_N2 trajectory¹³ and softness match¹⁴ between the participating thiolate at C-2 and the *trans-anti* anomeric leaving group (PhS⁻), as well as the stability of phenylthiolate as a leaving group relative to alkylthiolate or methoxide.15

An earlier study¹⁶ on ring closure of β -D-gluco 1-thiolates provides evidence for the transient formation of thiiranes related to **5**, but only amorphous sulfide polymer was isolated from the reaction mixture. The limited oligomerization of **4** observed here may reflect the behavior of the rather reluctant leaving group that leads to the formation of **5** in low concentration only. Once formed, **5** is trapped by the most reactive thiolates present, namely **4** and its lower oligomers. The less-hindered thiolates derived from **11** and **15** can also intercept **5** to some extent before it polymerizes. Interestingly, methanol and methoxide, which react quickly with glycal epoxides,¹⁷ and are present here in excess, do not intercept glycal episulfide **5** to any detectable extent (NMR, TLC). This may be another manifestation of the importance of a softness match for effective ring opening and closing of thiiranes.

Acknowledgment. We thank Hoechst Celanese for an Innovative Research Award and David Myers for help with the preparation of 1.

Supporting Information Available: Experimental procedures and spectroscopic characterization for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹²⁾ Maity, S. K.; Dutta, S. K.; Banerjee, A. K.; Achari, B.; Singh, M. Tetrahedron **1994**, *50*, 6965–6974.

⁽¹³⁾ For a recent discussion, see: Collins, P.; Ferrier, R. *Monosaccharides*; John Wiley & Sons: New York, 1995; pp 89–91, 203–206, 242, 266–269.

⁽¹⁴⁾ Pearson, R. G.; Songstad, J. J. Org. Chem. **1967**, *32*, 2899–2900. (15) Analogous ring closure of phenyl glycosides to the glycal epoxide (with O-2 participation) has been inferred: Ballou, C. E. Adv. Carbohydr. Chem. **1954**, *9*, 59–95.

OL990702X

⁽¹⁶⁾ Nakamura, H.; Tejima, S.; Akagi, M. Chem. Pharm. Bull. 1966, 14, 648-657.

⁽¹⁷⁾ Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661–6666.